

INITIAL STAGES OF ANODIC OXIDATION OF ALUMINIUM IN NEUTRAL FLUORIDE ELECTROLYTES

Christian Girginov, Martin Bojinov

Department of Physical Chemistry

University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

Introduction

Nanoporous anodic films on aluminum and other valve metals \rightarrow increasing attention \rightarrow applications as sensors, catalysts, electrodes for solar cells and batteries with enhanced photo-catalytic and photovoltaic activity

Their characteristics \rightarrow pore diameter and length \rightarrow easily controlled by the anodic oxidation parameters

Incorporation of metals, alloys and other oxides in their pores \rightarrow new functional nanomaterials with unique magnetic, semiconducting and electronic properties

Recently, it has been demonstrated that neutral fluoride-containing electrolytes are suitable for formation of self-ordered alumina templates [1] \rightarrow no consensus over the pore nucleation and growth mechanism

Aim

To investigate the initial stages of the oxide template formation, involving Al dissolution, barrier film growth and nanopore initiation

Experimental

Working electrodes → pure AI (99.999%) foils (area of 4 cm²), annealed for 1h at 400°C to remove mechanical stress

Pretreatment → electropolishing, H₃PO₄/ H₂SO₄ / CrO₃, 0.1-0.2 A cm⁻², 82°C, 3 min., brightening in 1.8% CrO₃ and 7% H₃PO₄ at 75°C, 3 min., rinsing with bi-distilled water. - Pt mesh counter electrode, situated symmetrically around the working electrode, and an Ag/AgCl/3 M KCl reference electrode.

Electrolytes - 0.5 M (NH₄)₂SO₄ + x M NH₄F (x = 0.050, 0.075 and 0.100)

Electrochemical measurements → Autolab PGSTAT 30/FRA2 using GPES and FRA software (Eco Chemie, The Netherlands) → current vs. time curves registered in the range of potentials from -1.2 to 0 V \rightarrow after a constant value of the current reached, electrochemical impedance spectra measured at a given potential (frequency range 10 mHz - 10 kHz, ac amplitude 10 mV rms). Measurement of the quantity of dissolved Al \rightarrow ICP-OES (Prodigy)

Results and Discussion

Current vs. potential curves (Fig. 1) - several process stages:

Quasi-exponential increase of the current (-1.2..-1.0 V) → mainly dissolution of

Current plateau (-1.0..-0.7 V) → passivation, barrier layer formation Plateau current \rightarrow linear increase with fluoride concentration At higher potentials \rightarrow dissolution of the oxide, pore nucleation?

The dependence of current density on fluoride concentration in this region more complex

Potential / V

Fig. 1 Current density / potential curves in all investigated electrolytes in the potential range -1.2 - 0 V. Insert - dependence of current density at -0.8 V on fluoride concentration

Impedance spectra (Fig.2)

In the active region (-1.2.-1.0 V) - three to four time constants, multistep dissolution process

In the passivation region - two time constants - high-frequency capacitive and low-frequency pseudo-inductive → migration of current carriers and their recombination [2], faradaic pseudo-capacitance at the lowest frequencies Passivation region - diameters of both high and low-frequency semicircles increase with potential while the current stays almost constant \rightarrow barrier film growth coupled to dissolution

Diameters of both high- and low-frequency semicircles \rightarrow decrease with increasing fluoride concentration at constant potential (agreement with current vs. potential curves)

Acknowledgement - National Science Fund of Bulgaria, Contract No. DDVU 02/103-2010 "Nanoporous anodic oxides as a new generation of optically active and catalytic materials (NOXOAC)" for financial support

Fig. 2 Electrochemical impedance spectra obtained: a) in 0.5 M (NH₄)₂SO₄ + 0.1 M NH₄F at different potentials; b) at -1.0 V in all three investigated electrolytes

Fig. 3 Current density vs. time curves at different potentials in 0.5 M (NH₄)₂SO₄ + 0.1 M NH₄F electrolyte; Insert – concentration of dissolved AI as depending on potential and fluoride concentration

Current vs. time curves and analysis of dissolved products (Fig.3)

Evidence of three time constants in the active region and at least two in the passivation region \rightarrow agreement with the impedance spectra Current peak in the passivation region - peak time decreases with increasing potential → pore nucleation?

Dependence of dissolved Al concentration on potential and fluoride content complex - at least two parallel paths of dissolution involved

Future steps

- · Characterization of the oxides with surface analytical techniques
- · Elaboration of a kinetic model of the process based on the surface charge approach combined with a multistep AI dissolution scheme
- · Estimation of kinetic and transport parameters

References

- H. Tsuchiya, S. Berger, J. M. Macak, A. G. Munoz, P. Schmuki, Electrochem. 1. Commun. 9 (2007) 545.
- M. Bojinov, Nanoporous anodic oxides, Ch. 14 in Handbook of Nanophysics, Vol.5, Functional Nanomaterials, Kl. Sattler, Ed., Taylor & Francis, 2010, 14-1 - 14-21.